Embracing the Complexities of Molecular Communication

Jiaming Wang, Dongyin Hu, Chirag Shetty, Haitham Hassanieh

University of Illinois at Urbana-Champaign
Micro and Nano Bio Implants

- Microrobots for drug delivery
- Micro Brain Implants
- Nano-Implants that can move in the blood vessels
- Contraception Micro-Implants
- Bio-MEMS Lab-On-Chip for In body Diagnosis
Micro and Nano Bio Implants

How to communicate with and network Nano & Micro Implants?

Traditional implants use wireless

- Large form factor for nano and micro implants
- Requires powerful external device
- Cannot network implants inside the body
Molecular Communication

Communication paradigm inspired by chemical signaling between cells inside the body.

Neurons release neurotransmitters to communicate

Glands release hormones into the blood stream
Encode bits by releasing molecules into the blood stream

Bits: 1 0 1
State of the Art In Molecular Communication

• Most past work is simulation based:
 - Models the MC channel
 - Makes overly simplified assumptions

• Little experimental work:

 ![Experimental Setup](image)

 Traditional decoders:
 - 0.25 bps with 1% BER
 - 1 bps with 10% BER

• Recent Work leverages RNN:
 - Avoid modeling the MC channel
 - 4 bps with 4% BER
Can we achieve better understanding of the molecular communication channel & Improve performance without using Neural Networks?
In this paper

1. Highlight two new key characteristics of the MC channel that have been overlooked by past work.

2. Present a system that accounts for these characteristics of the MC channel.

3. Experimentally validate the findings and demonstrate improvement in achievable data rates and BER.
Diffusion

Brownian Motion
Diffusion

Graphs showing the signal over time for different receivers (RX1, RX2, RX3) and a transmitter (TX).
Delay Spread vs. Coherence Time

RF

Stable!

packet

hdr
data

delay spread
light speed
a few us

coherece time
stable environment
10s of ms

short header and long data

Stable!
MC requires frequent but smart channel state information estimation.

Delay Spread vs. Coherence Time

- **Packet**
 - **hdr**
 - **data**

- **Delay Spread**
 - **Diffusion Speed**
 - A few sec

- **Coherence Time**
 - Stable Environment
 - 10s of sec

References

Causality

- Light speed in straight line
- First received is first transmitted
- Interference from previous symbols
Causality

MC requires more consideration about inter-symbol interference

- Diffusion is slow and random
- First received may not be first transmitted
- Interference from both previous and following symbols
1. What are the distinct characteristics of MC channel?

2. How do we handle these characteristics?

3. What is the performance of our solution?
Channel Estimation & Synchronization

Hidden Markov Model & Viterbi Algorithm

Intermediate Decoded Sequence

Output Decoded Sequence

Non-causality

Correct?

Channel Tracking

Long delay spread
\(\mu \)-Link – Hidden Markov Model
\[p(s_1, \ldots, s_{k+1}, r_1, \ldots, r_{k+1}) \]
\[= p(s_1, \ldots, s_k, r_1, \ldots, r_k) \cdot p(s_{k+1} | s_k) \cdot p(r_{k+1} | s_{k+1}) \]
\(\mu \text{-Link} – \text{Channel Tracking} \)

\[
p(s_1, \ldots, s_{k+1}, r_1, \ldots, r_{k+1}) \\
= p(s_1, \ldots, s_k, r_1, \ldots, r_k) \cdot p(s_{k+1} | s_k) \cdot p(r_{k+1} | s_{k+1})
\]
μ-Link Evaluation

Diffusion of NaCl molecules as they propagate to from TX to RX. (Colored red for demonstration)

Arduino TX & RX Controllers

RX EC Reader

NaCl

TX Pumps

Advection

Bulk flow

Background Flow Pump

bit 1

bit 0
Effectiveness of μ-Link design

μ-Link without nc and cu
μ-Link without cu
μ-Link

BER

\[
\begin{align*}
\text{Bitrate (bps)} & \\
2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
0 & 0.05 & 0.1 & 0.15 & 0.2 & 0.25 & 0.3
\end{align*}
\]

1CU – Channel update (channel tracking)
2NC – Non-causality

7% 17%
Compared decoders

1. Least-Squares decoder
2. RNN decoder (Bi-directional LSTM)\(^1\)

Data set

1. Different data rates
2. Different Tx-Rx distances
3. Different Tx-Rx path (single/double path)

Conclusion

1. Molecular communication is a potential method to enable networking between micro implants inside human body.

2. This paper highlights distinct channel properties of MC, i.e. non-causality and long delay spread.

3. μ-Link can achieve 0.2% BER at 5 bps and 5% BER at 10 bps, which is comparable to RNN solution.

4. μ-Link takes the first step to investigate these differences and opens discussions about fundamental principles in MC.
Understanding and Embracing the Complexities of the Molecular Communication Channel in Liquids

Jiaming Wang, Dongyin Hu, Chirag Shetty, Haitham Hassanieh
University of Illinois at Urbana-Champaign
jw27, dyhu, cshetty2, haitham@illinois.edu

ABSTRACT
Molecular communication has recently gained a lot of interest due to its potential to enable micro-implants to communicate by releasing molecules into the bloodstream. In this paper, we aim to explore the molecular communication channel through theoretical and empirical modeling in order to achieve a better understanding of its characteristics, which tend to be more complex in practice than traditional wireless and wired channels. Our study reveals two key new characteristics that have been overlooked by past work. Specifically, the molecular communication channel exhibits non-causal inter-symbol-interference and a long delay spread, that extends beyond the channel coherence time, which limit the system's performance. To address this, we propose, μ-Link, a molecular communication protocol and decoder that accounts for these new insights. We build a testbed to experimentally validate our findings and show that μ-Link can improve the achievable data rates with significantly lower bit error rates.

CCS CONCEPTS
• Networks → Cyber-physical networks; Physical links.

KEYWORDS
Molecular Communication, Diffusion, Non-Causal Channel, Micro-Implants, Inter-Symbol-Interference, Viterbi.

ACM Reference Format:

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

MobileCom '20, September 21–25, 2020, London, United Kingdom
© 2020 Association for Computing Machinery
ACM ISBN 978-1-4503-7085-3/20/09...$15.00
https://doi.org/10.1145/3373224.3419191

1 INTRODUCTION
Molecular communication (MC) has emerged as a promising technology for communication through fluids such as micro-implants communicating through the bloodstream or sensors communicating through industrial pipes [4, 20, 34]. In MC, a device can transmit data by releasing molecules into the fluid which are then transported and detected at a receiver [55]. For example, a device can release molecules to encode a “1” bit and release nothing to encode a “0” bit. The receiver can measure the concentration of molecules to determine whether the transmitted bit was a “1” or a “0”. Molecular communication has the potential to enable micro and nano-implants to communicate with each other inside the human body and coordinate sensing and actuation tasks. Recent advances in biomedical sciences have in fact led to the development of nano-implants that can sense human vitals from inside the body and even travel through the bloodstream to perform targeted drug delivery and treatment [12, 30, 55]. There is significant interest in enhancing the operation of such implants by connecting them using MC [4, 5, 9, 10, 20–23, 34, 35]. MC presents a suitable alternative to other communication technologies such as wireless. In particular, RF signals do not propagate well in fluids and form factor constraints prevent scaling RF radiators to micro and nano-dimensions [46, 56, 66]. In contrast, for MC, researchers can design synthetic cells that send and receive molecular signals [17, 52, 57], nano-scale Lab-on-a-Chip that monitor chemical content [30, 54, 61], and bio-implants that collect and process data [41, 43, 51].

While there is still a long way to realize the above vision, this paper takes steps to achieve a better understanding of the characteristics of the MC channel from both theoretical and empirical perspectives. The MC channel tends to be more complex in practice than standard RF, optical, or copper wire channels [28]. Understanding and addressing the differences between these channels and MC allows us to improve the performance of molecular communication.

There has been a significant amount of work on theoretically modeling the MC channel [15, 16, 46, 47, 47, 58, 59, 62, 65, 68]. However, these models tend to be overly simplified with assumptions that do not hold in practice (e.g., no inter-symbol-interference) or overly fitted to a closed form...